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Abstract

This paper examines the effects of investor sentiment on the mean-variance

relation. Behind the well-known ambiguous relation between the mean and

variance, the relation is significantly positive in the low sentiment periods and

close-to-zero in the high sentiment periods. The results are robust for four

volatility models. The empirical findings are consistent with economic intu-

itions. In the low sentiment periods, the price is damped down and the mean

of return is pushed up. The market price is a compromise between rational

traders and irrational traders. Hence the stocks are undervalued but irrational

traders still believe that the stocks are overvalued. Rational investors invest

more in stocks and irrational ones invest less. The ratio of the mean to the

variance must be higher, which attracts more wealth of rational investors. Vice

verse, the relation is lower in the high sentiment periods. We propose a general

equilibrium model to formalize these intuitions. Furthermore, our empirical

results show that the market’s reaction to volatility is not homogenous through

time but depends on investor sentiment. The whole market cares more about

volatility when sentiment is low and less when sentiment is high. Besides the

evidence from the mean-variance relation, the finding is confirmed by the empir-

ical results of the return-innovation relation. The relation between the returns

and the volatility innovations are much more negative in the low sentiment

periods.
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1 Introduction

Extensive studies have been done about the relation between the mean and the vari-

ance of stock market returns under the influence of Merton’s (1973) ICAPM. Merton

suggests that the conditional excess returns of the stock market should be positively

correlated with the market’s conditional variance:

Et(Rt+1) = a + bV art(Rt+1)

where b is the coefficient of the relative risk aversion of the representative agent.1

The economic intuition behind this positive correlation is straightforward. The risk

averse investors dislike volatility. High volatility reduces the current price and hence

increases the future return. Investors receive compensation for bearing volatility.

But no conclusive evidence is found in the stock market data for this theoretic and

intuitive relation. With different volatility models, divergent conclusions are reached.

French, Schwert and Stambaugh (1987), Baillie and DeGennaro (1990), Campbell

and Hentschel (1992) and Ghysels, Santa-Clara and Valkanov (2005) find an posi-

tive relation between the conditional mean and the conditional variance. Campbell

(1987), Nelson (1991), Whitelaw (1994), Lettau and Ludvigson (2003) and Brandt

and Kang (2004) find a negative relation. Turner, Starts and Nelson (1989), Glosten,

Jagannathan and Runkle (1993), Harvey (2001) and MacKinlay and Park (2004) find

both a positive and a negative relation.

The ambiguous empirical evidence leaves an embarrassment to finance theory.

Although risk aversion and the dislike of the volatility are viewed as facts in most

theories, there is no clear empirical evidence in the stock market data.

In classic finance theory, investor sentiment plays no role. Economists feel safe to

ignore irrational investors based on the following two arguments. First, the irrational

investors are met by rational investors, who trade against them. The process drives

the stock price close to its fundamental value. However, De Long et al (1990) argue

1Abel (1988), Backus and Gregory (1993), and Gennotte and Marsh (1993) construct models

where a negative expectation-variance relation is consistent with the equilibrium.
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that arbitrageurs are likely to be risk averse and to have reasonably short horizons.

The authors set up an overlapping generation model with arbitrageurs who hold

correct beliefs, and noise traders who hold wrong beliefs. They reach the conclusions

that arbitrage is limited and the stock price can be away from its fundamental value.

Second, even if irrational investors may drive the price away from the fundamental

value temporarily, they run out of wealth in the long run since they lose their money

to rational investors. However, new noise traders could enter the market in the real

world. Hence, although individual noise traders may die out sooner or later, the

population could survive and remain relative stable. Moreover, Yan (2005) claims

that although noise traders run out of wealth in the equilibrium without the entry

of new ones, the process takes a very long time. His simulation results show that it

takes several hundred years for noise traders with very wrong beliefs to lose half of

their wealth. Baker and Wurgler (2005) construct an investor sentiment index from

a set variables measuring the effects of noise trader sentiment on stock market. The

forty-year index shows no decreasing trend in the effects of noise traders.

With the recognition of the existence of investor sentiment and the limits of ar-

bitrage, investor sentiment should affect the mean-variance relation. In the stock

market, risk-averse investors decide their holdings of stock based on how their volatil-

ity bearing is compensated. They would invest more when the ratio of the mean to

variance is higher. When irrational traders are pessimistic (low sentiment periods),

the price is damped down and the mean of return is pushed up. The market price is a

compromise between rational traders and irrational traders. Hence the stocks are un-

dervalued but irrational traders still believe that the stocks are overvalued. Rational

investors invest more in stocks and irrational ones invest less. The ratio of the mean

to the variance must be higher, which attracts more wealth of rational investors. Vice

verse, when irrational investors are optimistic (high sentiment periods), the ratio of

the mean to the variance should be lower.

A general equilibrium model with heterogenous beliefs is constructed to formalize

the above intuitions. There are two types of investors in the market: arbitrageurs and
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noise traders. Both types are risk averse. The only difference is that noise traders

hold incorrect beliefs about the fundamental value. In the equilibrium, when noise

traders happen to have correct beliefs (zero sentiment), the Sharpe ratio is a positive

constant. This is consistent with Merton’s ICAPM. The model also shows that the

Sharpe ratio is decreasing function of investor sentiment. Hence, the model implies

that the mean-variance relation should be positive in the low sentiment periods.

Moreover, the relation in the high sentiment periods should be lower than that of

the low sentiment periods. However, whether the relation in the high sentiment

periods is still positive, zero or even negative depends on the magnitude of sentiment.

Hence, although all the investors are risk averse and dislike volatility, the divergence

of beliefs can drive the mean-variance relation dramatically different. The investors

receive more compensation for bearing volatility in the low sentiment periods than in

the high sentiment periods. Hence the whole market exhibits more dislike of volatility

in the low sentiment periods and less in the high sentiment periods.

Theoretical predictions are strongly supported by the empirical results. With

the investor sentiment index proposed by Baker and Wurgler (2005), we analyze the

mean-variance relation in the low and high sentiment periods. There is a significantly

positive mean-variance relation in the low sentiment periods, and a close-to-zero rela-

tion in the high sentiment periods. The results are robust for four popular volatility

models. We also analyze the relation between the returns and the innovations of

volatility. The return-innovation relation results provide further evidence for the

market’s reaction to volatility. If the market cares more about the volatility in the

low sentiment periods, the price should react more strongly to unexpected changes

of volatility. A volatility shock should more strongly reduce the current price. The

returns should have a more negative relation with contemporaneous innovations of

volatility in the low sentiment periods. The empirical results support that the market

dislikes the volatility more in the low sentiment periods than in the high sentiment

periods. There is a significantly negative relation between the returns and the volatil-

ity innovations in the low sentiment periods. The relation is significantly less negative

5



in the high sentiment periods. The results are also robust across the four volatility

models.

So far as we know, this is the first paper to examine the effects of investor sentiment

on the mean-variance relation. We find that there exists a hidden pattern behind

the well-known ambiguous relation between the mean and variance. The relation

is significantly positive in the low sentiment periods and close to zero in the high

sentiment periods. The empirical results are consistent with economic intuitions. In

the low sentiment periods, the stocks are undervalued and rational investors would

invest more in the stocks. The mean-variance relation must be higher to attract more

wealth of rational investors. Vice verse, the relation is lower in the high sentiment

periods. We build a general equilibrium model to formalize the above intuitions. Our

theory model further shows that investor sentiment is the source to drive the mean-

variance relation to vary through time, which is strongly supported by the empirical

results.

Furthermore, our empirical results show that the market’s reaction to volatility is

not homogenous through time but depends on investor sentiment. The whole market

cares more about volatility when sentiment is low and less when sentiment is high.

Besides the evidence from the mean-variance relation, the finding is confirmed by the

empirical results of the return-innovation relation. The relation between the returns

and the volatility innovations are much more negative in the low sentiment periods.

The rest of the paper is organized as follows: Section 2 presents our theory model

and its implications. Section 3 introduces the investor sentiment index. Section 4

describes the methodology of the empirical approach. Section 5 reports the empirical

results. Section 6 presents the conclusions.

2 The Model

In this section, we present a dynamic general equilibrium model with investor senti-

ment. The theory is minimized for the need of understanding the economic intuitions
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and empirical results. It deviates from the standard Lucas tree model by includ-

ing a noise trader, who has incorrect beliefs about the fundamental value of stock.

Our theoretical model shares some similarities with existing models of heterogeneous

beliefs. For example, Detemple and Murthy (1994) develop a continuous time produc-

tion economy in which traders have heterogeneous beliefs about parameters. Basak

(2000) builds a model based on Detemple and Murthy (1994) and analyzes equilibrium

effects of extraneous risk. Basak (2004) provides an excellent review of asset pricing

models with heterogeneous beliefs. Our model setup is most related to Yan (2005).

Yan (2005) constructs a general equilibrium model with constant misperception of

the noise trader. He focuses his analysis on the survival of the irrational investor. In

this paper, we analyze the economy with a more general sentiment process and focus

on the impact of investor sentiment on the mean-variance relationship.

2.1 Information Structure

We consider a continuous-time pure-exchange economy with an infinite horizon. The

uncertainty is represented by a filtered probability space (Ω,F , {Ft} ,P) on which a

one-dimensional Brownian motion B (t) is defined, where {Ft} denotes the augmented

filtration generated by the Brownian motion B (t). Assume there exists a stock which

is a claim to the following exogeneous aggregrate dividend, or consumption, process

D (t).
dD (t)

D (t)
= µDdt + σDdB (t)

where µD and σD are positive constant. Assume there are two investors (i = 1, 2) who

commonly observe this dividend process. However, they have different beliefs about

its underlying structure. Investor 1, the arbitrageur, holds the correct probability

beliefs P1 ≡ P . Investor 2, the noise trader, holds the wrong probability beliefs

P2 which is equivalent with P . By Girsanov theorem, there exist a unique process

δ (t) ∈ L2 such that B2 (t) ≡ B (t) − ∫ t

0
δ (s) ds is a Brownian motion under P2.
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Hence, from the arbitrageur’s point of view, the dividend has the following dynamics

dD (t)

D (t)
= µ1,D (t) dt + σDdB1 (t)

where µ1,D ≡ µD, B1(t) ≡ B(t)

However, from the noise trader’s point of view, the dynamics of the dividend is

dD (t)

D (t)
= µ2,D (t) dt + σDdB2 (t)

where µ2,D = δ (t) σD + µ1,D, δ (t) =
µ2,D − µ1,D

σD

When δ (t) is positive, the noise trader is optimistic since he overestimates the ex-

pected growth rate of the dividend. On the other hand, when δ (t) is negative, he is

pessimistic. In the model, δ (t) is defined as the noise trader’s sentiment at time t.

2.2 Consumption Space and Securities Markets

There is a single perishable good in the economy. The consumption space C is given

by the set of non-negative consumption rate processes c with
∫ T

0
c (t) dt < ∞ for any

T > 0. The investment opportunities are represented by two long-lived securities,

one risky stock and one locally riskless bond. The bond price process B (t) is given

by

dB (t) = B (t) r (t) dt, with B (0) = 1

The stock price has the following dynamics

dS(t) + D (t) dt

S(t)
= µ1 (t) dt + σ (t) dB (t)

= µ2 (t) dt + σ (t) dB2 (t)

where the first equation is the price dynamics perceived by the arbitrageur and the

second equation is the price dynamics perceived by the noise trader. The coeffi-

cients {r (t) , µ (t) ≡ µ1 (t) , µ2 (t) , σ (t)} are determined endogenously in equilibrium.

Although two investors have different beliefs about the expected stock return, they

agree on the stock price path

µ (t) dt + σ (t) dB (t) = µ2 (t) dt + σ (t) dB2 (t)
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Hence, we have
µ2(t)− µ(t)

σ (t)
= δ (t)

Therefore, the misperception on dividend growth transfers to the misperception on

the Sharpe ratio of the stock.

2.3 Trading Strategies

Trading takes place continuously and there are no market frictions. Investors’ trading

strategies (αi, θi) satisfy

∫ T

0

|αi (t) B (t) r (t)| dt +

∫ T

0

|θi (t) S (t) σ (t)|2 dt +

∫ T

0

|θi (t) S (t) µi (t)|2 dt < ∞

for any T > 0, where αi (t) and θi (t) denote, respectively, the number of shares of

the bond and the stock held by investor i. This is purely a technical condition.

2.4 Investors Preferences and Endowments

To keep our model simple, we assume that both investors have the same CRRA utility

function

ui (c (t)) =
c (t)1−γ

1− γ
for γ > 0

The investor i’s objective is to maximize

max
ci(t)

Ei
0

[∫ ∞

0

e−ρtui (ci (t)) dt

]

subject the budget constraint

dWi (t) = Wi (t) r (t) dt− ci (t) dt+ θi (t) S (t) [µi (t)− r (t)] dt+ θi (t) S (t) σ (t) dBi (t)

where Wi (t) ≥ 0 is investor i’s financial wealth at time t and ρ is the time preference

parameter. Here, we use Ei
t [·] to deonte the conditional expectation operator relative

to agent i’s probability beliefs. At time 0, investor i is endowed with βi shares of

stock, β1 + β2 = 1, and βi ≥ 0.

9



2.5 Sentiment Process

We assume exogenously the sentiment process δ (t) follows a mean reverting dynam-

ics2

dδ (t) = −αδ (t) dt + ηdB (t)

This process has both theoretical and empirical foundations. From the theoretical

side, Scheinkman and Xiong (2003) argue that overconfidence would lead to a mean-

reverting difference of opinions between different investors. Using their method, we

could generate exactly the above sentiment process. From the empirical side, Baker

and Wurgler (2005) build an investor sentiment index, which clearly follows a mean-

reverting process.

2.6 Equilibrium and Implications

Definition: A competitive equilibrium is a price system (B (t) , S (t)), consumption

process ci (t), and portfolio (αi (t) , θi (t)) such that: (i) each investor optimizes his

portfolio-consumption strategy. (ii) perceived security price processes are the same

across investors. (iii) all markets clear.

We present an intuitive solution of the equilibrium in the paper and a rigorous

proof for all the claims in the appendix. To characterize the competitive equilibrium,

we adopt a technique first used by Cuoco and He (1994) and developed by Basak

(2000). Basak (2000) demonstrates that in economies with heterogeneous beliefs, the

equilibrium can be attained by constructing a representative investor with a stochastic

weight process that captures the difference in investors’ beliefs.

By the standard martingale approach, we can solve the equilibrium completely.

2We exclude any learning in the model for simplicity. Furthermore, a model with learning usually

implies that investor sentiment converges to zero, which is inconsistent with the data. For simplicity,

we also assume that the process is mean-reverting to zero. Our results do not depend on this

assumption.
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First, define the representative agent with the utility

U (c (t) ; λ (t)) = max
c1(t)+c2(t)=c(t)

e−ρtu1 (c1 (t)) + λ (t) e−ρtu2 (c2 (t))

≡ e−ρtu1 (c∗1 (t)) + λ (t) e−ρtu2 (c∗2 (t))

where λ (t) > 0 captures the heterogeneity in beliefs and c∗i (t) is the optimal con-

sumption for agent i. By calculus, we can show that

Uc (c (t) ; λ (t)) = λ (t) u′2 (c∗2 (t)) = u′1 (c∗1 (t))

Furthermore, by the first order condition for agent i, the optimal consumption has to

satisfy

e−ρtu′i (c
∗
i (t)) = ψiξi (t)

where ξi (t) is the pricing kernel perceived by agent i and ψi is some normalization

constant which can be determined from budget condition. Hence,

λ (t) =
u′1 (c∗1 (t))

u′2 (c∗2 (t))
=

ψ1ξ1 (t)

ψ2ξ2 (t)

λ(t) is the ratio of investors’ marginal utility at time t. Following Ito’s lemma, we

have

dλ (t) = λ (t) δ (t) dB (t)

Hence, λ (t) is a positive local martingale, and then a supermartingale. Under reason-

able assumptions (e.g. mean-reverting) on the sentiment process δ(t), the weighting

process λ(t) is an honest martingale. In the homogenous case, ξ1 ≡ ξ2, then λ (t) is

a constant.

For CRRA utility, we can calculate the representative agent’s utility function,

U (c; λ) = max
c1+c2=c

[
c1 (t)1−γ

1− γ
+ λ

c2 (t)1−γ

1− γ

]
· e−ρt

=
c (t)1−γ

1− γ

(
1

1 + λ
1
γ

)−γ

· e−ρt

The individuals’ optimal consumptions are

c∗1 =
λ−

1
γ

1 + λ−
1
γ

c (t) ; c∗2 =
1

1 + λ−
1
γ

c (t) .
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Therefore, the pricing kernel of the arbitrageur is

ξ1 (t) =
1

ψ1

e−ρtu′1(c1(t))

=
1

ψ1

e−ρt

(
1 + λ (t)

1
γ

D (t)

)γ

By Ito’s lemma, we have

dξ1

ξ1

= −


ρ + γµD + γσDδ (t)

λ
1
γ

1 + λ
1
γ

+
γ − 1

2γ

δ2 (t) λ
1
γ

(
1 + λ

1
γ

)2 −
γ (γ + 1)

2
σ2

D


 dt

+

(
λ (t)

1
γ

1 + λ (t)
1
γ

δ (t)− γσD

)
dB (t)

Since ξ1(t) is the pricing kernel and the arbitrageur has the correct beliefs, we have

dξ1

ξ1

= −r(t)dt− µ(t)− r(t)

σ(t)
dB(t)

By matching the diffusion coefficients of the above two equations, we have the follow-

ing theorem.

Theorem 1 For CRRA utility, we have the following relationship between the ex-

pected excess return and the volatility.

µ (t)− r (t) =

[
γσD − λ (t)

1
γ δ (t)

1 + λ (t)
1
γ

]
· σ (t)

Proof : See Appendix.

γ is the coefficient of the relative risk aversion, σD is the diffusion coefficient of

the dividend process, δ(t) is investor sentiment, and λ(t) is the stochastic weighting

process in the representative agent utility function. If the arbitrageur holds most of

the wealth (λ(t) → 0) or the noise trader happens to have correct beliefs (δ(t) = 0),

the Sharpe ratio should be a positive constant, γσD. This conclusion is consistent

with ICAPM. If everyone in the market holds correct beliefs, volatility is compensated

with a positive constant price. Another clear message delivered by Theorem 1 is that

the Sharpe ratio is decreasing function of investor sentiment. As the noise trader
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becomes more optimistic, the investors receive less compensation for volatility. In

the extreme case, the Sharpe ratio can be negative when the noise trader is very

optimistic. Theorem 1 shows that the Sharpe ratio is a nonlinear function of investor

sentiment and the stochastic weighting process, λ(t). λ(t) can be viewed as a proxy for

the ratio of the noise trader’s wealth to the arbitrageur’s wealth. Hence the relation

depends on both noise trader sentiment and participation. Theorem 1 is very difficult

to test directly if it is not impossible. However, it supplies two testable predictions,

which we examine in the sections that follow. First, in the low sentiment periods

(negative sentiment), the mean-variance relation should be positive. Second, the

relation in the high sentiment periods should be lower than the low sentiment periods.

It is worthy of note that the proof of Theorem 1 doesn’t require any assumptions on

the sentiment process δ (t). Hence the theorem is valid under very general settings.

In our economy, the noise trader can not survive, since λ(t) converges to zero

almost surely. However, Yan (2005) shows that, even with constant misperception of

noise traders, it takes on average four hundred years for noise traders to lose half of

his wealth. Under our settings, noise trader sentiment is a mean-reverting process,

which makes noise traders easier to survive. Hence, it should not matter much for

our analysis.

3 Investor Sentiment Index

In this paper, we use the investor sentiment index proposed by Baker and Wurgler

(2005) to identify the low and high sentiment periods. Baker and Wurgler (2005)

form a composite index with six measures of investor sentiment. Since every measure

of sentiment contains some sentiment information and non-sentiment-related infor-

mation, they use the first principal component to capture the common variation in

the six measures.

The six measures are the closed-end fund discount, the NYSE share turnover,

the number and average first-day returns on IPOs, the equity share in new issues
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and the dividend premium. The closed-end fund discount is the average difference

between the net asset value and the market price. Lee, Shleifer and Thaler (1991)

show the existence of the closed-end fund puzzle and argue that investor sentiment

is the culprit. NYSE turnover is computed from the ratio of share volume to average

share number. Baker and Stein (2004) propose a model with short-sales constrains

and overconfidence investors. The model implies turnover comoves with investor

sentiment. The activities of the IPO market are often viewed as related to investor

sentiment. Stigler (1964) and Ritter (1991) argue that the return of the IPO firms can

be explained by market timing. Cornelli, Goldreich and Ljungqvist (2004) suggest

that sentiment demand has significant impact on the price of IPO firms. Baker and

Wurgler (2000) document that the share of equity issues in total equity and debt issues

has strong predictive ability for stock returns, which is consistent with the market

timing hypothesis. Hence it should be influenced by investor sentiment. The dividend

premium is the log difference of the average market-to-book ratios of dividend payers

and nonpayers. Baker and Wurgler (2004a and 2004b) propose a catering theory of

dividends: investor sentiment drives the prices of dividend payers or nonpayers away

from the fundamental values, which provides rational managers the incentive to cater.

Since the dividend premium is the measure of uniformed demand for dividend-paying

shares driven by sentiment, it should capture the information of investor sentiment.

To remove the business-cycle component from the sentiment index, Baker and

Wurgler (2005) regress each of the raw sentiment measures on the industrial pro-

duction index growth, consumer durables growth, nondurables growth and service

growth, employment growth and a dummy variable for NBER recessions. The or-

thogonalized measures, which are the residuals from the above regressions, should be

cleaner measures for investor sentiment. Finally, the composite sentiment index is

standardized to have zero mean and unit variance.

In this paper, we use the updated investor sentiment index, which begins in 1962

and ends in 2003.3 The solid line in Figure 1 is the composite sentiment index. The

3Baker and Wurgler (2005) also construct the index with the six raw measures. They show that

14



index captures most anecdotal accounts of fluctuations in sentiment.4 After the 1961

crash of growth stocks, investor sentiment is low, rising to a subsequent peak in the

1968 and 1969 electronic bubble. By the mid-1970s, sentiment is again low. In the late

1970s, sentiment level picks up and reaches a peak in the biotech bubble. Sentiment

drops in the late 1980s and goes up again in the early 1990s reaching a peak in the

internet bubble.

Table 1 reports the correlations of the sentiment measures. The results show that

there is a strong common component in the six sentiment measures. In Panel A,

we find most of correlations of the raw measures are significant. The correlations

between the index and the six raw measures are high and significant at a 5% level.

In Panel B, with controlling macroeconomics conditions, the correlations are even

stronger. All the correlations among the orthoganalized measures are significant at a

10% level and almost two thirds of them are significant at a 1% level. The correlation

with the index are very high and all significant at a 1% level.

A criticism to Baker and Wurgler’s index is that there may be alternative hy-

potheses for most of the six sentiment measures. The index could identify some other

economic source instead of investor sentiment. However, Table 1 shows that there is

a common source behind all the individual sentiment measures. Although it is not

difficult to provide a hypothesis that other economic variable is behind some single

sentiment measure, it is far more challenging to propose a unified theory to argue that

something other than investor sentiment is the common source of all six measures.

Unless such a unified alternative can be reasonably formulated, investor sentiment

seems to be the most plausible component identified by Baker and Wurgler’s index.

Moreover, there is evidence that the empirical results based on Baker and Wur-

gler’s sentiment index are consistent with behavior hypotheses. In Baker and Wurgler

(2005), they analyze the effects of investor sentiment on the cross-sectional pattern

of stocks with their own index. They find that the cross-sectional patterns vary with

the two indexes have little difference, which also has very minor influence on our results.
4For the detailed discussions about the anecdotal history of investor sentiment, see Baker and

Wurgler (2005).
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investor sentiment in a way behavioral hypothesis predicts. Yuan (2005) uses Baker

and Wurgler’s index to examine the predictive ability of sentiment for stock returns.

The high value of the sentiment index predicts low future returns and the low value

predicts high future returns, which is consistent with the behavior theory. With

Baker and Wurgler’s index, this paper also find significant empirical results that are

consistent with the economic intuitions and our theoretical model. Hence, our paper

provides some additional evidence that Baker and Wurgler’s index indeed identifies

investor sentiment other than any other economic source.

4 Methodology

Four volatility models are used to analyze two relations: the mean-variance relation5

and the relation between the returns and the innovations of volatility. The four

volatility models are the rolling window model, the Mixed Data Sampling approach

(MIDAS), GARCH(1,1) and asymmetric GARCH(1,1). The purpose of our paper

is not to evaluate and compare different volatility models. Instead, all the models

are treated equally to analyze the mean-variance relation. Before going through the

details of the four models, we first introduce two common variables used in all the

four models.

The first variable is a dummy variable for the high sentiment periods. In this pa-

per, we examine the relation between monthly returns and monthly volatility. How-

ever, the sentiment index is annual data. We use beginning-of-period sentiment as

a proxy for investor sentiment.6 So the sentiment value at the beginning of a year

is assigned to every month in that year. Then we define the months with the top

5Our model implies the relation between the mean and standard deviation. However, almost

all the existing literature focus the analysis on the mean-variance relation. We examine the mean-

variance relation in this paper. The relation between the mean and standard deviation has the same

empirical patterns as the mean-variance relation.
6One advantage is that the dummy variable is in the last month information set. So only ex ante

information is added when the dummy variables are incorporated to models.
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half sentiment values as the high sentiment periods, and the other half as the low

sentiment periods.7 Dt+1 is defined as the dummy variable for the high sentiment

periods, i.e. Dt+1 is 1 if the month t + 1 is in the high sentiment periods. Dt+1 is in

the information set of the month t, since it is derived from the beginning-of-period

sentiment value.

The second variable is the monthly realized variance. Following French, Schwert

and Stambaugh (1987), we estimate the monthly realized variance with the within-

month daily returns:

σ2
t =

22

Nt

Nt∑

d=1

r2
t−d ,

where rt−d is the demeaned daily return in the month, the corresponding subscript

t− d is for the date t minus d days, Nt is the number of trading days in the month t

and 22 is the approximate number of trading days in one month. The above estimator

is justified theoretically by Anderson et al (2003), who show that it is an unbiased

and efficient estimator of actual volatility.

The rest of this section is as follows: Subsection 4.1 discusses the mean-variance

relation and the return-innovation relation. Subsection 4.2, 4.3 and 4.4 present the

specifications of the conditional variance and the innovation of volatility for the four

models.

4.1 Two Relations

The previous literature analyzes the mean-variance relation in the equation:

Rt+1 = a + bV art(Rt+1) + εt+1 ,

where Rt+1 is the monthly excess return and V art(Rt+1) is the conditional variance.

To test whether investor sentiment has significant effects on the mean-variance rela-

tion, the following equation is analyzed:

Rt+1 = a1 + b1V art(Rt+1) + a2Dt+1 + b2Dt+1V art(Rt+1) + εt+1 ,

7With the mean of sentiment as the cutting point, we obtain the same results.
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where Dt+1 is the dummy variable for the high sentiment periods. So a1 and b1 are

the intercept and the coefficient in the low sentiment periods. a2 and b2 are the

differences of the intercepts and the coefficients between the high sentiment periods

and the low sentiment periods respectively.

To analyze the relation between the returns and the volatility innovations, the

following equation is examined:

Rt+1 = a1 + b1V art(Rt+1) + c1V ar(Rt+1)
u

+a2Dt+1 + b2Dt+1V art(Rt+1) + c2Dt+1V ar(Rt+1)
u + εt+1 ,

where V art(Rt+1) is the conditional variance and V ar(Rt+1)
u is the contemporaneous

volatility innovation.

We have two optional measures for volatility innovations. One is the unexpected

change of current volatility. The second is the unexpected change of future volatility.

Since the volatility process is highly persistent, the two measures should be highly

correlated. Each of the measures has its own advantage and disadvantage. The second

one is more plausible theoretically because what investors really care about is future

volatility. But in some volatility models, additional assumptions are needed to get

the volatility exceeding the next period. Hence there is some risk of misspecifications.

In this paper, we choose the volatility innovation measure with the following strategy.

If no additional assumption is needed to estimate the volatility exceeding the next

period, we use the unexpected change of future volatility as the proxy. Otherwise,

the unexpected change of current volatility is selected.

4.2 Rolling Window Model

A natural method to estimate the conditional variance is the rolling window model

(for example, French, Schwert and Stambaugh (1987), MacKinlay and Park (2004)

and Ghysels, Santa-Clara and Valkanov (2005)). The rolling window model uses the

realized variance of this month as the conditional variance for the next-month return.
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So the conditional variance is

V art(Rt+1) = σ2
t =

22

Nt

Nt∑

d=1

r2
t−d .

French, Schwert and Stambaugh (1987) argue that the difference between realized

variance and conditional variance is a good proxy for volatility innovation. They

call the difference “unpredictable component of volatility”. In the rolling window

model, we use the unpredictable component of the volatility as the proxy for volatility

innovation:

V ar(Rt+1)
u = σ2

t+1 − V art(Rt+1) = σ2
t+1 − σ2

t .

The unpredictable component of volatility is the unexpected change of current volatil-

ity. With the additional assumption that the volatility follows a random walk process,

this measure here is also the unexpected change of future volatility.

4.3 Mixed Data Sampling Approach

The rolling window model models the conditional variance as the sum of approxi-

mately 22 squared daily demeaned returns with equal weights. Ghysels, Santa-Clara

and Valkanov (2005) argue that, although the rolling window model is straightfor-

ward, a better estimator can be achieved with longer horizon daily returns and optimal

weights. They construct a new estimator of conditional variance with the Mixed Data

Sampling approach (MIDAS). The MIDAS estimator of the conditional variance is as

follows:

V art(Rt+1) = 22
250∑

d=0

wdr
2
t−d ,

where

wd(κ1, κ2) =
exp{κ1d + κ2d

2}∑250
i=0 exp{κ1i + κ2i2}

,
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rt−d is the demeaned daily return8 and the corresponding subscript t − d is for the

date t minus d days. The daily data of the previous 250 days, approximately one

year, is used to model the monthly conditional variance. wd is the weight on r2
t−d. κ1

and κ2 are the parameters controlling the weights. The weight function has several

good properties. First, the weight is positive. Second, the sum of the weight is always

equal to one. Ghysels, Santa-Clara and Valkanov (2005) further argue that the weight

function can provide flexible shape. The parameters in MIDAS can be estimated with

the maximum likelihood method.

To examine the return-innovation relation, we also use the unpredictable compo-

nent of volatility as a proxy of volatility innovation. With the maximum likelihood

estimators of κ1 and κ2, the conditional variance can be estimated. Then the dif-

ference between the realized variance and the conditional variance are calculated as

volatility innovation.

4.4 GARCH and Asymmetric GARCH

Bollerslev (1986) proposes the GARCH model based on the ARCH model developed

by Engle (1982). In recent years, the GARCH model is extensively used in modeling

the volatility of the stock market returns. Nelson (1991) and Glosten, Jaganathan and

Runkle (1993) argue that the GARCH model should have more flexibility, in which

positive shocks and negative shocks can have different influence on volatility. To

solve the this problem, Glosten, Jaganathan and Runkle (1993) propose asymmet-

ric GARCH. GARCH(1,1) and asymmetric GARCH(1,1) are the third and fourth

volatility models in this paper. In GARCH(1,1), the conditional variance is modeled

as follows:

V art(Rt+1) = ω + αε2
t + βV art−1(Rt) ,

8To be consistent with the realized variance estimator and the rolling window model, daily de-

meaned return is used here. The daily demeaned return is computed by subtracting the within-month

mean return from the daily raw return. Ghysels, Santa-Clara and Valkanov (2005) use daily raw

return instead. This modification has very minor effects on our empirical results.
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where V art(Rt+1) is the conditional variance and εt is the residual in the mean-

variance equation in Subsection 4.1. In asymmetric GARCH(1,1), the conditional

variance is modeled as follows:

V art(Rt+1) = ω + α1ε
2
t + α2Itε

2
t + βV art−1(Rt) ,

where It is the dummy variable for positive shocks, i.e. It is 1 when εt is positive.

To check the return-innovation relation, we need to estimate volatility innova-

tions. In GARCH(1,1) and asymmetric GARCH(1,1), we can calculate the future

variance exceeding the next period. Without any new assumptions, we can compute

the unexpected changes of future variance, which is used as the proxy for volatility

innovation here. Daily data is used to improve the volatility estimation. The details

are as follows. We first fit the daily returns with the simple GARCH(1,1):

rraw
t+1 = µ + εdaily,t+1 ,

ht+1 = ω + αε2
daily,t + βht ,

where rraw
t+1 is the daily raw return and ht+1 is the conditional variance of the daily

returns. With the estimations from daily GARCH(1,1), the monthly conditional

variance and the monthly volatility innovation are calculated:

V art(Rt+1) = Et(
22∑

d=1

ht+d) ,

V ar(Rt+1)
u = V art+1(Rt+2)− V art(Rt+2) = Et+1(

22∑

d=1

ht+1+d)− Et(
44∑

d=23

ht+d) ,

where Rt is the monthly excess return, ht is the conditional variance of the daily

returns and the corresponding subscript t + d is for the date t plus d days. Then the

above estimations are used to analyze the return-innovation equation in Subsection

4.1. For asymmetric GARCH(1,1), the procedures are the same. The difference is

that the daily conditional variance is modeled as asymmetric GARCH(1,1).
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5 Empirical Results

5.1 Data and Summary Statistics

The annual investor sentiment index starts in 1962 and ends in 2003. The investor

sentiment data is provided by Malcolm Baker and Jeffrey Wurgler. We use the NYSE-

AMEX equal-weighted index as a proxy for the stock market and the return of one

month T-bill as a proxy for the interest rate. The monthly equal-weighted index

returns, the daily equal-weighted index returns and the monthly T-bill returns are

obtained from CRSP for the period from January 1963 to December 2004.

Table 2 displays summary statistics of the monthly excess returns and the realized

variance. We report the summary statistics in the whole sample, in the low sentiment

periods and in the high sentiment periods.

Panel A shows that the moments of the returns in the low sentiment periods

are quite different from those in the high sentiment periods . In the whole sample,

the mean of the excess return is 0.773% and the variance is 0.294 × 10−2. The

excess returns are negatively skewed and leptokurtic. The mean of the excess returns

is 1.396% in the low sentiment periods and 0.150% in the high sentiment periods.

The returns are much higher in the low sentiment periods, which is consistent with

economic intuitions and our model. The variance of the returns in the low sentiment

periods, 0.250×10−2, is slightly lower than the variance in the high sentiment periods,

0.333 × 10−2. Panel B reports the moments of the monthly realized variance. The

low sentiment periods are clearly less volatile than the high sentiment periods. All

the moments of the realized variance in the low sentiment periods are much smaller

than those in the high sentiment periods.

The skewness and kurtosis of stock returns exhibit interesting patterns. The

skewness in the whole sample is -0.067. The skewness is 0.958 in the low sentiment

periods and -0.654 in the high sentiment periods. The overall negative-skewness

property seems mainly to result from the high sentiment periods. The kurtosis is

7.479 for the whole sample, 10.547 for the low sentiment periods and 5.149 for the
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high sentiment periods. The low sentiment periods have a fatter tail. Hence the

well-documented negative skewness and fat tail properties of the stock returns can be

viewed in a new way: the negative skewness in the high sentiment periods and the

fat tail property in the low sentiment periods.

In fact, our theoretical model implies that the skewness of the returns is positive

in the low sentiment periods and negative in the high sentiment periods. Under the

assumption that sentiment follows a mean-reverting process, the distribution of sen-

timent, conditional on the low sentiment periods, should have a longer tail on the

left side. Hence the sentiment is left skewed in the low sentiment periods. A lower

sentiment implies a higher expected return given other quantities fixed in our theo-

retical model. This is also intuitive since lower sentiment pushes down the stock price

and increases the future excess return. Therefore, the returns in the low sentiment

periods should be right skewed. The skewness of the return in the low sentiment

periods should be positive. Vice versa, the skewness in the high sentiment periods

should be negative.

5.2 Mean-variance Relation

Table 3 and Table 4 report the estimates and t statistics for the mean-variance re-

lation. The results from the rolling window model and MIDAS are in Table 3. The

results from GARCH(1,1) and asymmetric GARCH(1,1) are in Table 4.

Our model predicts that the mean-variance relation should be positive in the

low sentiment periods and that the relation should be lower in the high sentiment

periods. Our empirical results provide strong supports for the theoretical predictions.

In the rolling window model, b, the coefficient of the conditional variance in the model

without the sentiment effects, is -0.299. The t statistic is -0.33. There is an ambiguous

mean-variance relation. When sentiment effects are considered, b1 is 13.075 and b2

is −13.714. The t statistic is 1.94 and -2.02 respectively. b1 is significant for the

one-sided test and b2 is significant for the two-sided test. b1 + b2, the coefficient in the
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high sentiment periods, is -0.639 9. The t statistic is -1.06. So there is a significantly

positive relation in the low sentiment periods and an insignificantly negative relation

in the high sentiment periods.

The positive relation in the low sentiment periods is not only statistically signifi-

cant but also economically significant. The standard deviation of the realized variance

is 7.779×10−4 in the low sentiment periods. One standard deviation increase in vari-

ance is associated with an increase of the monthly returns by 1.017%.

We get similar results in MIDAS. In the model without the sentiment effects, b is

3.232. The t statistic is 1.47, which is not significant. b1 is 19.861 and b2 is -18.147.

The t-statistics are 4.55 and -3.53 respectively. Both are significant. b1 + b2 is 1.714.

The t statistic is 0.633. The relation is significantly positive in the low sentiment

periods and significantly lower in the high sentiment periods. Moreover, the relation

in the high sentiment periods are not statistically different from zero. κ1 and κ2 are

respectively -0.018 and 0.048 × 10−3. The estimated weight system is different from

the equal-weighted system.10

In Table 4, similar results are also found from GARCH(1,1) and asymmetric

GARCH(1,1). In GARCH(1,1), b is 4.461. The t statistic is 1.95. b1 is 7.566 and b2

is -3.531. The t statistics are 2.28 and -0.86 respectively. b1 + b2 is 4.038 with the

t statistic, 1.18. In asymmetric GARCH(1,1), b is 4.080. The t statistic is 1.84. In

the model with the sentiment dummy variables, b1 is 11.453 and b2 is -8.029. The t

statistics are 2.59 and -1.76. b1 + b2 is 3.424 with the t statistic, 1.18.

With the updated data, our results confirm some findings by the existing liter-

ature. First, the mean-variance relation is ambiguous if sentiment effects are not

considered. Second, the estimations are sensitive to the selection of volatility model.

However, in all four volatility models, we reach the same conclusion: there is a signif-

icantly positive relation in the low sentiment periods and close-to-zero relation in the

high sentiment periods. The empirical results are consistent with our theory model.

9b1 + b2, the coefficient in the high sentiment periods is not reported in the tables. Instead, we

report b1, the coefficient in low sentiment periods, and b2, the difference of the coefficients.
10When κ1 and κ2 are both zeros, the estimated weight system is equal-weighted.
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Investors receive more compensation for bearing volatility in the low sentiment pe-

riods. Moreover, our new findings also provide insight for the market’s reaction to

volatility. The whole market exhibits more dislike of volatility when sentiment is low.

Although the estimates from the four volatility models seem to be different, they

have very close economic implications. In the four volatility models, the standard

deviation of estimated variance process in the low sentiment periods is 7.778× 10−4,

4.780 × 10−4, 15.503 × 10−4 and 10.564 × 10−4 respectively. The relation is 13.075,

19.861, 7.556 and 11.453. Hence one standard deviation increase in variance is associ-

ated with an increase of the monthly returns by 1.017%, 0.949%, 1.173% and 1.210%

in the four models.

We also examine the mean-variance relation for the value-weighted index. The

monthly and daily NYSE-AMEX value-weighted index returns are obtained from

CRSP. The results from the four volatility models are reported in Table 5. All the

estimations of b1 are positive and all the estimations of b2 are negative. Most of them

are significant. The results here verify our findings.

5.3 Return-innovation Relation

The empirical results from the return-innovation relation confirm that the market

dislikes volatility more in the low sentiment periods. The relation between the return

and contemporaneous volatility innovations is more negative in the low sentiment

periods. Table 6 and Table 7 report the estimates and t statistics for the return-

innovation relation. The results from the rolling window model and MIDAS are

reported in Table 6. The results from GARCH(1,1) and asymmetric GARCH(1,1)

are present in Table 7.

In the rolling window model, c1, the coefficient of the volatility innovation in the

low sentiment periods, is -22.625. The t statistic is -3.10. c2, the difference between

the coefficients in the high sentiment periods and the coefficient in the low sentiment

periods, is 15.543. The t statistic is 2.09. Hence there is a significantly negative

relation in the low sentiment periods and a significantly less negative relation in the
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high sentiment periods. It seems that the unexpected change of volatility have effects

on the current price both in the low and high sentiment periods. However, the market

reacts much stronger in the low sentiment periods. It dislikes volatility more when

sentiment is low.

In MIDAS, we get similar empirical results. c1 is -24.674. The t statistic is -3.54.

c2 is 17.456. The t statistic is 2.46. The coefficient in the low sentiment periods is

significantly negative and the difference is significantly positive. In GARCH(1,1) and

asymmetric GARCH(1,1), similar results are also found. c1 is -21.656 in GARCH(1,1)

and -26.198 in asymmetric GARCH(1,1). The t statistic is -4.14 and -8.47 respectively.

c2 is 12.760 in GARCH(1,1) and 15.395 in asymmetric GARCH(1,1). The t statistic

is 2.31 and 3.95 respectively. The estimates and t statistics for the daily models are

showed in Panel B in Table 7.

Again, the same empirical conclusions are reached in the four volatility models.

There is a significantly negative relation between the return and the contemporaneous

volatility innovations in the low sentiment periods. The relation is significantly less

negative in the high sentiment periods. Furthermore, with the four different volatil-

ity models and the two different volatility innovation measures, we get very close

estimations. c1 ranges from -21 to -27 and c2 ranges from 12 to 18. The empirical

results are very robust across the different volatility models and the different volatility

innovation measures.

The empirical results of the return-innovation relation provide additional evidence

for the market’s reaction to volatility. The whole market dislikes volatility more and

reacts more strongly to volatility in the low sentiment periods. A volatility shock

reduces the current price more in the low sentiment periods than in the high sentiment

periods.

The results for the value-weighted index are reported in Table 8. All the estima-

tions of c1 and c2 have the correct sign. Moreover, all of them are significant. The

results of the value-weighted index strongly support our findings about the return-

innovation relation.
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5.4 Mean-variance Relation as a Linear Function of Senti-

ment

Theorem 1 shows that the Sharpe ratio is a complicated nonlinear function of investor

sentiment as follows:

µ (t)− r (t) =

[
γσD − λ (t)

1
γ δ (t)

1 + λ (t)
1
γ

]
· σ (t)

where λ(t) is the stochastic weighting function in the representative agent utility

function and δ(t) is investor sentiment. In general, the relation is nonlinear. However,

in some special cases, it is a linear function of investor sentiment.

If the noise trader holds most of the wealth in the market, λ(t) → ∞. Then the

above relation is as follows.

µ (t)− r (t) = [γσD − δ(t)] · σ (t)

Since the composite sentiment index is a linear transformation of the real sentiment

process, the relation is a linear function of the sentiment index. Under this setting,

the representative agent has correct beliefs on average. However he may be optimistic

or pessimistic sometimes.

The relation is also a linear function of sentiment if λ(t) is constant over time.

λ(t) can be viewed as a proxy for the ratio of noise trader’s wealth to arbitrageur’s

wealth. If the participation of noise traders does not vary across time, the linear

relation should approximately hold.

In this subsection, we examine the results in the specification where the mean-

variance relation is a linear function of the sentiment index. The test is not only

a robust check for our main empirical results. It also provides another empirically

feasible way to test whether the mean-variance relation depends on investor sentiment.

The caveat is that the theory model does not imply such a linear function in general.

It is valid only in some special cases.

The empirical model is as follows:

Rt+1 = a0 + a1δt + (b0 + b1δt)V art(Rt+1) + εt+1 ,
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where δt is the sentiment value at the end of last year and V art(Rt+1) is the conditional

variance of the monthly excess returns. The conditional variance is estimated by the

four volatility models. In GARCH(1,1) and asymmetric GARCH(1,1), both monthly

and daily data are used to estimate the conditional variance. b1 is expected to be

negative, which implies that the mean-variance relation is a decreasing function of

sentiment. b0 is expected to be positive. There should be a positive relation when

sentiment is zero.

Table 9 reports the estimations and t statistics. All the estimations for b0 and

b1 have the correct sign and most of them are significant. All the estimations of

b1 are negative. Three out of the six are significant for the two-sided test. One

is significant for the one-sided test. All the estimations of b0 are positive. Two of

them are significant for the two-sided test. One is significant for the one-sided test.

Furthermore, the estimations are also economically significant. Since the sentiment

index has unit variance, b1 is the magnitude of the mean-variance relation change

associated with one standard deviation change in sentiment. b1 ranges from -3.883

to -1.154. Sentiment clearly has significant effects on the mean-variance relation.

The results here strongly support our main empirical finding that investor sentiment

affects the mean-variance relation.

6 Conclusion

This paper analyzes the effects of investor sentiment on the mean-variance relation.

We build a general equilibrium model that implies that the mean-variance relation

should depend on investor sentiment. The relation should be positive in the low sen-

timent periods and lower in the high sentiment periods. Hence, in the low sentiment

periods, investors receive more compensation for bearing volatility and the whole

market exhibits more dislike of volatility.

The mean-variance relation analysis have in the past been very sensitive to the

choice of volatility models. When considering investor sentiment, we find a hidden
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pattern of the relation that is robust across the volatility models. The mean-variance

relation is significantly positive in the low sentiment periods and close to zero in

the high sentiment periods. The empirical results are consistent with our theoretical

predictions.

Moreover, the empirical results show that the market reaction to volatility is not

homogeneous across time. The market reacts more strongly to volatility in the low

sentiment periods. The mean-variance relation results imply that volatility more

strongly affect the price in the low sentiment periods than in the high sentiment

periods. The empirical results of the return-innovation relation confirm the finding.

The relation is significantly negative in the low sentiment periods and less negative

in the high sentiment periods.
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Appendix

A. Proof of Theorem 1

The proof is a variation of Karatzas, Ioannis, John Lehoczky, and Steven Shreve

(1990) with heterogeneous agents. In the following, we provide a detailed proof.

Assume that {r (t) , µ (t) , σ (t) , ci (t) , αi (t) , θi (t)} is an equilibrium, then agent i’s

optimization problem is

max
ci(t)

Ei

∫ ∞

0

e−ρt ci (t)
1−γ

1− γ
dt

subject to

dWi (t) = Wi (t) r (t) dt− ci (t) dt+ θi (t) S (t) [µi (t)− r (t)] dt+ θi (t) S (t) σ (t) dBi (t)

Since the market is complete, by the martingale approach (see Cox and Huang (1989)

or Karatzas, Ioannis, John Lehoczky, and Steven Shreve (1987)), it is equivalent for

agent i to solve the following static problem

max
ci(t)

Ei

∫ ∞

0

e−ρt ci (t)
1−γ

1− γ
dt

subject to

Ei

∫ ∞

0

ξi (t) ci (t) dt ≤ βiE
i

∫ ∞

0

ξi (t) D (t) dt,

where ξi (t) (ξi (0) = 1) is the pricing kernel perceived by agent i with the following

dynamics
dξi (t)

ξi (t)
= −r (t) dt− µi − r (t)

σ (t)
dBi (t) .

Therefore, by the first order condition,

e−ρtc∗i (t)−γ = ψiξi (t) (1)

where ψi can be determined from the following budget condition

Ei

∫ ∞

0

ξi (t)
[
ψie

−ρtξi (t)
]− 1

γ dt = βiE
i

∫ ∞

0

ξi (t) D (t) dt

Let’s define λ (t) as

λ (t) =
e−ρtc∗1 (t)−γ

e−ρtc∗2 (t)−γ =
ψ1ξ1 (t)

ψ2ξ2 (t)
(2)

30



By Ito’s lemma and the constraint µ2(t)−µ1(t)
σ(t)

= δ (t), we have

dλ (t) = d

[
ψ1ξ1 (t)

ψ2ξ2 (t)

]

= λ (t)

[
−r (t) dt− µ1 (t)− r (t)

σ (t)
dB1 (t)

]

+λ (t)

[
r (t) dt +

(
µ2 − r (t)

σ (t)

)2

dt +
µ2 (t)− r (t)

σ (t)
dB2 (t)

]

−λ (t)
µ1 (t)− r (t)

σ (t)

µ2 (t)− r (t)

σ (t)
dt

= λ (t)

[
δ (t)

µ2 (t)− r (t)

σ (t)

]
dt

+λ (t)

[
µ2 (t)− r (t)

σ (t)
dB1 (t)− δ (t)

µ2 (t)− r (t)

σ (t)
dt− µ1 (t)− r (t)

σ (t)
dB1 (t)

]

= λ (t) δ (t) dB1 (t)

From the market clearing condition, we have

c∗1 (t) + c∗2 (t) = D (t) (3)

Then, combining equation (2) and (3), we have

c∗1 (t) =
D (t)

1 + λ (t)−
1
γ

; c∗2 (t) =
λ (t)−

1
γ D (t)

1 + λ (t)−
1
γ

(4)

By equation (1) and (4),

ξ1 (t) =
1

ψ1

e−ρtc∗1(t)
−γ

=
1

ψ1

e−ρt

(
1 + λ (t)

1
γ

D (t)

)γ

By Ito’s lemma, we have

dξ1

ξ1

= −


ρ + γµD + γσDδ (t)

λ
1
γ

1 + λ
1
γ

+
γ − 1

2γ

δ2 (t) λ
1
γ

(
1 + λ

1
γ

)2 −
γ (γ + 1)

2
σ2

D


 dt

+

(
λ (t)

1
γ

1 + λ (t)
1
γ

δ (t)− γσD

)
dB (t)
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Since ξ1(t) is the pricing kernel and the arbitrageur has the correct beliefs, we have

dξ1

ξ1

= −r(t)dt− µ (t)− r (t)

σ (t)
dB(t)

By matching the diffusion coefficients of the above two equations, we obtain

µ (t)− r (t) =

[
γσD − λ (t)

1
γ δ (t)

1 + λ (t)
1
γ

]
· σ (t)

Therefore, we have completed the proof of Theorem 1.

B. The existence of the irrational beliefs that supports the

mean-reverting sentiment process

In the following, we show that there exists a probability measure P2 which supports

a mean-reverting investor sentiment process. Instead of checking the usual Novikov

condition, we show that the sentiment process δ (t) satisfies the condition in Corollary

5.16 in Karatzas and Shreve (1991) (page 200). Indeed,

δ (t) = δ (0) e−αt + η

∫ t

0

e−α(t−s)dB (s)

≤ |δ (0)|+ η

(
B (t)−

∫ t

0

B (s) de−α(t−s)

)

≤ |δ (0)|+ η
(
2− e−αt

)
B∗ (t)

≤ (1 + B∗ (t)) ·max(η
(
2− e−αt

)
, |δ (0)|)

By Corollary 5.16 in Karatzas and Shreve (1991), there exists a probability belief P2

which supports the sentiment process δ (t) since Z (δ (t)) is a martingale.
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Figure 1: The Investor Sentiment Index from 1962 to 2003
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Table 1: The Correlations Among Six Sentiment Measures

Panel A Raw Measures

CEFD TURN NIPO RIPO S P D−ND Sentiment

CEFD 1.000 −0.602a

TURN −0.305b 1.000 0.682a

NIPO −0.511a 0.310b 1.000 0.602a

RIPO −0.386b 0.474a 0.266c 1.000 0.786a

S 0.018 0.218 0.244 0.174 1.000 0.371b

PD−ND 0.520a −0.499a −0.506a −0.591a −0.083 1.000 −0.770a

Panel B Controlling Macro Conditions

CEFD⊥ TURN⊥ NIPO⊥ RIPO⊥ S⊥ PD−ND⊥ Sentiment

CEFD⊥ 1.000 −0.622a

TURN⊥ −0.339b 1.000 0.652a

NIPO⊥ −0.422a 0.267c 1.000 0.668a

RIPO⊥ −0.434a 0.516a 0.422a 1.000 0.804a

S⊥ −0.270c 0.363b 0.484a 0.400a 1.000 0.552a

PD−ND⊥ 0.329b −0.513a −0.470a −0.659a −0.269c 1.000 −0.755a

CEFD is the year-end, value-weighted average discount on close-end funds. TURN is detrended

natural log turnover. Turnover is the ratio of share volume to average shares from the NYSE Fact

Book. NIPO is the annual number of IPO firms. RIPO is the annual first-day returns of IPO

firms. S is the annual equity issuance divided by annual equity plus debt issuance. PD−ND is

the year-end log ratio of the value-weighted average market-to-book ratios of dividend payers and

nonpayers. In Panel B, to control macro conditions, we regress the six sentiment measures on the

growth of industry production, the growth of durable, nondurable and services consumption, the

growth of employment and a dummy variable for NBER recessions. The orthogonalized measures,

labeled with a ⊥, are the residuals from the regressions. Sentiment is the first principal component

of the six orthogonalized measures. The sample period is from 1962 to 2003. a, b and c denote

statistical significance at 1%, 5% and 10% level.
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Table 2: Summary Statistics of Monthly Excess Returns and Realized Variance

Panel A Monthly Excess Returns

Mean Variance Skewness Kurtosis

×102 ×102

Whole sample 0.773 0.294 -0.067 7.479

Low sentiment 1.396 0.250 0.958 10.547

High sentiment 0.150 0.333 -0.654 5.149

Panel B Monthly Realized Variance

Mean Variance Skewness Kurtosis

×103 ×106

Whole sample 1.069 5.832 15.013 282.091

Low sentiment 0.689 0.565 2.793 12.551

High sentiment 1.449 10.833 11.535 158.755

The monthly excess returns are computed from the monthly NYSE-AMEX equal-weighted index

returns and one month T-bill returns. The realized variance is computed from the with-in month

demeaned daily NYSE-AMEX equal-weighted index returns.The sample period is from January 1963

to December 2004.
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Table 3: The Monthly Excess Returns Against the Conditional Variance From the

Rolling Window Model and MIDAS

a (a1) b (b1) a2 b2

Panel A Rolling Window Model

Without sentiment 0.008 -0.299

(5), (7) (3.10) (-0.33)

With sentiment 0.005 13.075 -0.002 -13.714

(6), (7) (1.15) (1.94) (-0.38) (-2.02)

a (a1) b (b1) a2 b2 κ1 κ2

×103

Panel B MIDAS

Without sentiment 0.004 3.232 -0.018 0.048

(5), (8) (2.23) (1.47) (-2.36) (1.66)

With sentiment -0.001 19.861 -0.000 -18.147 -0.020 0.053

(6), (8) (-0.21) (4.55) (-0.09) (-3.53) (-2.77) (1.90)

Rt+1 = a + bV art(Rt+1) + εt+1 (5)

Rt+1 = a1 + b1V art(Rt+1) + a2Dt+1 + b2Dt+1V artRt+1 + εt+1 (6)

V art(Rt+1) = 22
Nt∑

d=1

1
Nt

r2
t−d (7)

V art(Rt+1) = 22
250∑

d=0

wdr
2
t−d wd(κ1, κ2) =

exp{κ1d + κ2d
2}∑250

i=0 exp{κ1i + κ2i2}
(8)

Rt+1 is the monthly excess returns on the NYSE-AMEX equal-weighted index. rt−d is the daily

demeaned NYSE-AMEX equal-weighted index returns (the daily returns minus the within-month

mean). Nt is the number of trading days in the month t. Dt+1 is the dummy variable for the high

sentiment periods. When the sentiment is high, it is 1. The sample period is from January 1963

to December 2004. The numbers in the parenthesis are t-statistics from the Newey-West standard

error estimators with 12 lags in Panel A and t-statistics from the MLE standard error estimators in

Panel B.
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Table 4: The Monthly Excess Returns Against the Conditional Variance From

GARCH(1,1) and Asymmetric GARCH(1,1)

a (a1) b (b1) a2 b2 ω α β

×103

Panel A GARCH(1,1)

Without sentiment -0.003 4.461 0.150 0.086 0.868

(9), (11) (-0.51) (1.95) (2.13) (3.06) (22.93)

With sentiment -0.006 7.566 -0.001 -3.531 0.167 0.087 0.859

(10), (11) (-0.74) (2.28) (-0.06) (-0.86) (2.19) (3.14) (22.13)

a (a1) b (b1) a2 b2 ω α1 α2 β

×103

Panel B Asymmetric GARCH(1,1)

Without sentiment -0.003 4.080 0.241 0.126 -0.097 0.838

(9), (12) (-0.45) (1.84) (2.45) (2.86) (-1.86) (18.39)

With sentiment -0.017 11.453 0.011 -8.029 0.266 0.124 -0.103 0.831

(10), (12) (-1.46) (2.59) (0.88) (-1.76) (3.29) (3.16) (-2.63) (21.84)

Rt+1 = a + bV art(Rt+1) + εt+1 (9)

Rt+1 = a1 + b1V art(Rt+1) + a2Dt+1 + b2Dt+1V art(Rt+1) + εt+1 (10)

V art(Rt+1) = ω + αε2t + βV art−1(Rt) (11)

V art(Rt+1) = ω + α1ε
2
t + α2Itε

2
t + βV art−1(Rt) (12)

Rt+1 is the monthly excess returns on the NYSE-AMEX equal-weighted index. V art(Rt+1) is the

conditional variance. Dt+1 is the dummy variable of the investor sentiment. When the sentiment is

high, it is 1. It is the dummy variable of positive shocks. The sample period is from January 1963

to December 2004. The numbers in the parenthesis are t-statistics.
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Table 5: The Mean-variance Relation for the Value-weighted Index

a1 b1 a2 b2

Rolling window -0.000 8.650 0.003 -9.361

(-0.00) (2.22) (0.72) (-2.38)

MIDAS -0.002 10.413 0.002 -9.593

(-0.66) (2.62) (0.46) (-2.14)

GARCH(1,1) -0.007 9.696 -0.005 -2.080

(-0.68) (1.50) (-0.43) (-0.29)

Asy GARCH(1,1) -0.019 15.703 0.028 -17.109

(-1.54) (2.02) (2.34) (-2.41)

Rt+1 = a1 + b1V art(Rt+1) + a2Dt+1 + b2Dt+1V artRt+1 + εt+1

Rt+1 is the monthly excess returns on the NYSE-AMEX value-weighted index.

V art(Rt+1) is the conditional variance. Dt+1 is the dummy variable for the high

sentiment periods. When the sentiment is high, it is 1. The sample period is from

January 1963 to December 2004. The numbers in the parenthesis are t-statistics from

the Newey-West standard error estimators with 12 lags or from the MLE standard

error estimators.
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Table 6: The Monthly Excess Returns Against the Conditional Variance and the

Unpredictable Component of Variance From the Rolling Window Model and MIDAS

Model

a1 b1 c1 a2 b2 c2

Rolling window 0.014 -1.395 -22.625 0.002 -5.664 15.543

(13), (14) (2.11) (-0.12) (-3.10) (0.35) (-0.49) (2.09)

MIDAS 0.001 16.885 -24.674 0.005 -19.280 17.456

(13), (15) (0.06) (1.54) (-3.54) (0.53) (-1.66) (2.46)

Rt+1 = a1 + b1V art(Rt+1) + c1V ar(Rt+1)u

+a2Dt+1 + b2Dt+1V artRt+1 + c2Dt+1V ar(Rt+1)u + εt+1 (13)

V art(Rt+1) = 22
Nt∑

d=1

1
Nt

r2
t−d (14)

V art(Rt+1) = 22
250∑

d=0

wdr
2
t−d wd(κ1, κ2) =

exp{κ1d + κ2d
2}∑250

i=0 exp{κ1i + κ2i2}
(15)

Rt+1 is the monthly excess returns on the NYSE-AMEX equal-weighted index. V art(Rt+1) is the

conditional variance. V ar(Rt+1)u is the unpredictable component of the variance (the realized

variance minus the conditional variance). κ1 and κ2 are estimated from the MIDAS model without

the sentiment dummy variable in Table 2 (κ1 = −0.018 and κ2 = 0.048 × 10−3). rt−d is the daily

demeaned NYSE-AMEX equal-weighted index returns (the daily returns minus the within-month

mean). Nt is the number of trading days in the month t. Dt+1 is the dummy variable for the high

sentiment periods. When the sentiment is high, it is 1. The sample period is from January 1963

to December 2004. The numbers in the parenthesis are t-statistics from the Newey-West standard

error estimators with 12 lags.
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Table 7: The Monthly Excess Returns Against the Conditional Variance and the

Innovations of Future Volatility From GARCH(1,1) and Asymmetric GARCH(1,1)

Panel A

a1 b1 c1 a2 b2 c2

GARCH 0.001 6.277 -21.656 0.010 -11.633 12.760

(16), (17), (18) (0.07) (0.57) (-4.14) (0.99) (-1.05) (2.31)

Asymmetric GARCH 0.009 -0.008 -26.198 0.002 -5.089 15.395

(16), (17), (19) (1.36) (-0.00) (-8.47) (0.25) (-0.66) (3.95)

Panel B Daily Estimations

a ω α(α1) α2 β

×103 ×106

GARCH 1.090 1.802 0.181 0.794

(17), (18) (19.56) (9.49) (17.25) (68.93)

Asymmetric GARCH 1.009 1.869 0.231 -0.123 0.797

(17), (19) (18.25) (9.73) (16.17) (-10.68) (67.61)

Rt+1 = a1 + b1V art(Rt+1) + c1V ar(Rt+1)u

+a2Dt+1 + b2Dt+1V artRt+1 + c2Dt+1V ar(Rt+1)u + εt+1 (16)

rraw
t+1 = µ + εdaily,t+1 (17)

ht+1 = ω + αε2daily,t + βht (18)

ht+1 = ω + α1ε
2
daily,t + α2Itε

2
daily,t + βht (19)

Rt+1 is the monthly excess returns on the NYSE-AMEX equal-weighted index. V art(Rt+1) is

the monthly conditional variance implied by daily GARCH(1,1) or asymmetric GARCH(1,1).

V ar(Rt+1)u is the innovations of future volatility implied by daily GARCH(1,1) or asymmetric

GARCH(1,1). rraw
t+1 is the daily raw return and ht+1 is the conditional variance of daily returns.

Dt+1 is the dummy variable for the high sentiment periods. It is the dummy variable for positive

shocks. The sample period is from January 1963 to December 2004. The numbers in the paren-

thesis are t-statistics from the Newey-West standard error estimators with 12 lags in Panel A and

t-statistics from the MLE standard error estimators in Panel B.
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Table 8: The Return-innovation Relation for the Value-weighted Index

a1 b1 c1 a2 b2 c2

Rolling window 0.009 -1.411 -15.679 0.002 -2.699 11.578

(1.95) (-0.24) (-4.41) (0.38) (-0.47) (3.28)

MIDAS 0.003 4.147 -21.050 0.005 -6.906 16.762

(0.72) (0.91) (-6.08) (0.86) (-1.46) (4.85)

GARCH 0.005 -2.051 -19.944 0.006 -1.931 14.748

(0.89) (-0.32) (-3.71) (0.86) (-0.31) (2.73)

Asy GARCH 0.010 -7.496 -30.901 0.000 3.901 25.637

(2.10) (-1.55) (-8.59) (0.06) (0.81) (6.70)

Rt+1 = a1 + b1V art(Rt+1) + c1V ar(Rt+1)u

+a2Dt+1 + b2Dt+1V artRt+1 + c2Dt+1V ar(Rt+1)u + εt+1

Rt+1 is the monthly excess returns on the NYSE-AMEX value-weighted index. V art(Rt+1)

is the conditional variance. V ar(Rt+1)u is the volatility innovation. Dt+1 is the dummy

variable for the high sentiment periods. When the sentiment is high, it is 1. The sample

period is from January 1963 to December 2004. The numbers in the parenthesis are t-

statistics from the Newey-West standard error estimators with 12 lags.
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Table 9: Model the Mean-variance Relation as a Linear Function of Investor Sentiment

a0 a1 b0 b1

×102 ×102

Rolling window 0.661 -0.312 1.699 -2.748

(2.49) (-1.16) (1.12) (-2.20)

MIDAS 0.116 -0.323 6.777 -3.696

(0.59) (-1.67) (2.95) (-1.77)

monthly GARCH(1,1) -0.443 -0.170 4.923 -1.154

(-0.64) (-0.29) (1.95) (-0.60)

monthly Asy GARCH(1,1) -0.514 0.544 5.104 -3.883

(-0.78) (0.63) (2.13) (-1.18)

daily GARCH(1,1) 0.576 -0.199 2.022 -2.833

(1.84) (-0.70) (1.03) (-2.15)

daily Asy GARCH(1,1) 0.710 -0.247 0.974 -2.631

(2.75) (-0.88) (0.75) (-2.44)

Rt+1 = a0 + a1δt + (b0 + b1δt)V art(Rt+1) + εt+1

Rt+1 is the monthly excess returns on the NYSE-AMEX equal-weighted index. δt is

investor sentiment at the end of last year. V art(Rt+1) is the conditional variance.

The sample period is from January 1963 to December 2004. The numbers in the

parenthesis are t-statistics from the Newey-West standard error estimators with 12

lags or from the MLE standard error estimators.

47


